
Porting applications to BeOS and Zeta

Case study: .

Introduction

Recurrent problem of the BeOS platform: lack of software.

We are getting more native applications,
but some are too complex to reimplement natively.

Considerations (1: supported platforms)
Is the app already multiplatform ?

Yes: there is probably a defined interface
 for supporting new platform backends

No: How hard is it to add a second platform in the app ?

Is it worth it ? Maybe native app would be faster...

Considerations (2: low-level APIs)
What kind of API does the app use ?

POSIX: quite easy, for most stuff.

WIN32: Not so different from POSIX
hint cygwin implements POSIX from WIN32...

just need the other way round.

abstract: abstraction layer in the app: just need to write the wrappers.

Other: pray :-)

Considerations (3: User Interface)
Type of the app ?

Terminal (CLI, curses):
smile :D

Minimal GUI (dialogs, alerts):
maybe popen("/bin/alert") could work ?
some simple C wrapper around GUI code...

"Flat" GUI (like Bochs, many games):
backend API to provide the app with a virtual framebuffer,
and basic keyboard input.

Toolkit based GUI:

Identify the complexity of toolkit usage

Disable complex controls ?

Multi-platform already ?

Considerations (4: Thread safety)

App uses threads ?

Is the work code rentrant ?

If yes it might be called from a BLooper object regularily.

If not we need to serialized the input the app needs.

Case study: XEmacs
Is the app already multiplatform ? YES

What kind of API does the app use ? POSIX or WIN32

Type of the app ? toolkit with abstraction layer

Identify the complexity of toolkit usage

Disable complex controls ?

Multi-platform already ? YES

limited, main work is drawing text.
Gui code is segmented.

./configure --with-widgets=no \
--with-scrollbars=no ...

App uses threads ? NO

Is the work code rentrant ? lisp engine reentrant to some extend, but very complex.
We need to serialize input.

First native XEmacs window:
start simple

lisp C

console Lisp_Object console console_x console_msw console_beos

display Lisp_Object display display_x display_msw display_beos

frame Lisp_Object frame frame_x frame_msw frame_beos

event Lisp_Object event frame_x frame_msw frame_beos

window Lisp_Object window

console type ?

font Lisp_Object font font_x font_msw font_beos

scrollbar scrollbar_x scrollbar_msw scrollbar_beos

Object organization

Event handling
Monothreaded app: BeOS app:

main()

Wait for event(s): select(), PeekMessage()...

Dispatch event(s)

BApplication

Run()

Wait for event

DispatchMessage()

BWindow

Run()

Wait for event

DispatchMessage()

BWindow

Run()

Wait for event

DispatchMessage()

main thread
window threads

How to run the app code if the main thread is executing BApplication::Run() ?

Some questions:

How can we get those messages from the main thread ?

run_bapp()
{

be_app->Lock();
be_app->Run();
return 0;

}

main()
{

new MyApplication("appli...");
t = spawn_thread(run_bapp, "BApp", ...);
resume_thread(t);
be_app->Unlock();

// app code
...

be_app->Lock();
be_app->Quit();
delete be_app;

}

Main thread

We need to run 2 codes concurrently...

Just use 2 threads !

BApplication takes over main thread...
actually the thread that calls Run().

Serializing events

pipe

main thread

select(..., event_pipe,);

Dispatch event(s)

BApplication

BWindow

BWindow

MouseDown/MessageReceived/...()
{

BMessage *msg;
msg = DetachCurrentMessage();
msg->AddInt32("looper", this);
write(p[1], &msg, 4);

}

BMessage *msg;
read(p[0], &msg, 4);
make_LispEvent(msg);
delete msg;

Some autoconf tricks

Cannot find libm ?

Undefined symbol 'syslog', 'openlog', ...

AC_CHECK_LIB(m,sin)

Detecting BONE libs AC_CHECK_LIB(socket,socket)
AC_CHECK_LIB(nsl,gethostbyname)
AC_CHECK_LIB(resolv,gethostbyname)
AC_CHECK_LIB(bind,gethostbyname)

AC_CHECK_LIB(be,openlog)

function realpath, getpass, ... undefined:
AC_CHECK_FUNC(getpass) ...

#ifdef HAVE_GETPASS
p = getpass("Password:");
#else
// some approximation, like:
char buff[50];
puts("Password:");
// pass appears in tty,
// but we get it
p = fgets(buff, 50, stdin);
#endif
...

then we need to ifdef out some code:

and remove hardcoded references

The result...
<- The X11 GUI
The native GUI ->

...With antialiased fonts ;)

Questions ?

Thanks for coming.
Any question ?

