
Demo: Universal File System Extended Attributes Namespace

François Revol ∗

Grenoble University - Laboratoire d’Informatique de Grenoble (LIG);
Laboratoire de Conception et d’Intégration des Systèmes (LCIS)

{firstname}.{sirname}@imag.fr

Abstract
The growing usage of file system extended attributes on
many operating systems faces interoperability problems
when trying to preserve them across multiple platforms. We
propose a generic namespace design and mapping method
to maintain an identical view of the global meta-data names-
pace by each operating system. Additionally, we try to ad-
dress the API and semantic incompatibilities with a higher
level framework.

1. The Problem
Filesystem extended attributes, often abreviated xattrs, or
EAs, are a form of file meta-data consisting of name-value
pairs, and are used in many operating systems, under many
forms and names (Resource Fork, Named Streams), for
many purposes, either for security concerns (Access Con-
trol Lists, Proof Carrying. . .), fallback for missing filesys-
tem properties (DOS attributes, POSIX atime) or user-level
applications [4], from early adopters like the BeOS, up to re-
cent semantic desktops [5]. However various incarnations of
EA concepts are usually incompatible with each other. Some
have split namespaces for kernel-private data (ACL. . .),
some have typed values[3], and the API aren’t compatible.

The growing usage of incompatible extended attributes
conflicts with the need for interoperability, further more in
Open-Source operating systems like GNU/Linux which now
includes implementations for many foreign filesystems like
FAT, NTFS, SMB, BFS and HFS. Each such implementa-
tion either uses a naive approach for mapping foreign ex-
tended attributes leading to namespace pollution and name
clashes [1], or a more complex but unilaterally-imposed (and
thus not idempotent) mangling [7] when the file is moved

∗ Ph.D candidate

[Copyright notice will appear here once ’preprint’ option is removed.]

across disks and systems, or sometimes just doesn’t expose
extended attributes at all due to lack of a clear mapping.
A recent proposition for NFS extended attribute support on
Linux already asserts incompatibility with the original IRIX
implementation [6]. Some old filesystems do not support ex-
tended attributes, for which several incompatible backing-
store schemes have been devised, some being patented [2].

While reading physical disks from different systems was
unlikely in the past, growing usage of networked filesystems
and virtualization platforms, using optimized shared folders
like VMware, increases the issue since they are meant to
be used from multiple operating systems. Other higher-level
protocols, for example rsync and subversion, and archive
formats like tar and star also try to support some form of
extended attributes.

1.1 Example
A 0-byte file on a BFS partition seen from the Haiku operat-
ing system could carry the following extended attributes:

File: /boot/home/people/François_Revol

Type Size Name Value

’MIMS’ 21 "BEOS:TYPE" "application/x-person"

STRING 14 "META:email" "revol@free.fr"

STRING 8 "IM:status" "Offline"

STRING 23 "META:url" "http://revolf.free.fr/"

RAW 20 "_trk/pinfo_le" 00 BA E3 EC A7 09...

After copying this file to an NTFS partition, rebooting
to Windows to copy the file to a Samba share running on
GNU/Linux, then rebooting to Haiku to read it back from
the ext3 filesystem, the extended attributes might become:

File: /unnamed_ext3/home/revol/François_Revol

Type Size Name Value

RAW 264 "linux.user.DosStreams"

05 00 00 00 00 00 00... ’................’

00...-42 45 4f 53 5f... ’........BEOS_TYP’

45 00 53 4d 49 4d 61... ’E.SMIMapplicatio’

2. Proposed Solution
Instead of having each vendor define its own reserved
namespace prefix for others to implement, we define a com-
mon prefix that all vendors should recognize, and map each
vendor’s native namespace below it. The unified namespace

1 2011/2/17

system
trusted

user

uxa

sys

user

ns

ea

md

...

ntfs

ntfs
ext3
bfs

uxa user * ntfs
ext3

uxa user ns hfs

*

*

uxa user ea,
md

bfs
ext3

*

hfs

*

*

ntfs namespaces uxa namespace

ext3 namespace

bfs namespace

uxa
sys,
user

* ntfs
bfs *

**

* *

*

...

*
*...

Figure 1. The tao of xattr namespaces

does not try to map extended attribute semantics between
platforms, but instead focuses on ensuring correct preser-
vation of the original form, and leaves the interpretation of
foreign data to higher layers.

2.1 Namespace Hierarchy
We reserve part of each native EA namespace with an un-
likely prefix uxa. for Unified eXtended Attributes, to map
the global namespace and subdivide it further, while keep-
ing the native names unchanged. Foreign EAs would then
appear in a branch of the reserved namespace. When copied
from a native filesystem to a foreign one, the mapping is re-
versed: the remaining part of the native namespace appears
in the designated branch of the reserved namespace, and ex-
isting EAs copied to the branch corresponding to the for-
eign filesystem are extracted from the reserved namespace.
A shortened unix shell pattern-like representation would be:

uxa.{sys|user}.{ea|ns|md}.{bfs|ntfs|posix|sun|*}.*

The proposed hierarchy for the reserved namespace is as
follow, using reversed-DNS like notation, though shortened
to minimize size and performance penalty on file copying,
and shouldn’t require special encoding. The root level de-
fines the reserved namespace. The second level separates
user-accessible EAs from kernel-only names, though the se-
curity implications would likely warrant not using it. The
third level indicates if the EA originates from a named
stream or real EA, since some platforms support both. Other
forms of meta-data (md) are accounted for, to handle map-
ping POSIX atime for example. The last designated level
names the platform the EA originates from, and indicates
the corresponding mangling scheme to use. The next level
maps native namespaces from vendors, and assumes UTF-8
encoding. Vendor-specific mappings should ensure preserva-
tion of the original name, possibly through percent-escaping
as with Uniform Resource Locators. The unified names-
pace can be mapped partially multiple times, for example a
filesystem supporting both EAs and named streams would
map the uxa.*.ns.* and uxa.*.{ea|md}.* in the respec-
tive namespaces. Likewise for user-accessible and restricted
namespaces.

2.2 Higher Level View
In order to better abstract extended attribute mechanisms,
we take model of the traditional OSI network layering [8],

and separate the transport and presentation layers. For per-
formance reasons, we propose to split the implementation of
the universal xattr namespace. The basic remapping scheme
would be implemented in file system layers, typically for-
eign filesystem kernel modules, while native filesystems will
likely not have to mangle the system’s native API view of the
xattrs. Then higher level views would be available through
either a custom library exposing more semantics, or a reim-
plemented libxattr compatible with the Linux API for easier
portability. Other possibilities could include a Java API ex-
tension, building on JSR 203.

3. Shortcomings
The mapping doesn’t consider filesystems with limited stor-
age capabilities, and assumes small enough attributes. A fall-
back strategy should probably use backing files like with
filesystems missing extended attribute support. Some operat-
ing systems support extended attributes only on regular files,
not symlinks or directories. ACLs aren’t accounted for.

4. Conclusion
The purpose of this early work was to raise the concern about
extended attributes interoperability, propose a possible solu-
tion, and foster discussion between involved parties, possi-
bly leading to a standardized document like an IETF Request
For Comment, with vendors defining the global namespace
mapping to their own filesystems and protocols.

References
[1] Ntfs-3g extended attributes. http://www.tuxera.com/

community/ntfs-3g-advanced/extended-attributes/.

[2] S. M. FRENCH[US/US], D. J. KLEIKAMP[US/US], and
T. Y. T. TSO[US/US]. Method and apparatus for emulating
alternate data streams across heterogeneous file systems, 03
2008. (IBM) (US patent 2008/0065698 A1).

[3] D. Giampaolo. Practical file system design with the BE file
system. Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[4] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L.
Miller. High-performance metadata indexing and search in
petascale data storage systems. Journal of Physics: Conference
Series, 125:012069 (5pp), 2008.

[5] K. Möller and S. Handschuh. Towards a light-weight semantic
desktop. In Proceedings of the Semantic Desktop Design Work-
shop (SemDeskDesign 2007) at ESWC2007, Innsbruck, Aus-
tria, Innsbruck, Austria, June 2007.

[6] J. Morris. Adding extended attribute support to nfs.
http://namei.org/presentations/linuxcon09_

nfsv3xattrs.pdf, 2009.

[7] A. Tridgell. Wine/samba. http://www.samba.org/samba/

ftp/slides/tridge_wineconf05.pdf, 2005. (Wineconf).

[8] H. Zimmerman. Osi reference model - the iso model of archi-
tecture for open systems interconnection. IEEE Transactions
on Communications, (28), 1980.

2 2011/2/17

